

Sponsors

9th Annual CBE Graduate Research Symposium

Hosted By:

University of Notre Dame
Department of Chemical & Biomolecular
Engineering
Graduate Student Organization

Oct 5th & 6th 2023

Dahnke Ballroom,

Duncan Student Center

Welcome

Welcome to the 9th Annual CBE Graduate Research Symposium!

The goal of the CBE Symposium is to provide a forum for CBE graduate students to present their research, network with professionals from both industry and academia, and develop their professional identity.

Over the course of the symposium, students will showcase research from a wide range of disciplines, including catalysis, energy and sustainability, nano-fluidics, micro-fluidics, simulation and theory. materials science, nanotechnology, bioengineering.

The Symposium also features invited talks by experienced and renowned personalities in chemical engineering to provide a variety of perspectives on career development for PhD Chemical Engineers.

As this event has continued to grow, so too has the impact on CBE graduate student professional development and sense of community.

Thank you for attending the CBE Graduate Research Symposium.

Organizing Committee

Hailey Lynch

Fathya Salih

Montana Carlozo

Lingyu Yang

Event Schedule

DAY 1 PROGRAM

Arrivals/Sign-in 1:00 pm Opening Remarks and Seating 1:50 pm Student Presentations (1 - 3) 2:00 pm Industry Panel and Refreshments 3:00 pm Break and Refreshments 4:15 pm Student Presentations (4 - 6) 4:30 pm Dinner and Networking 5:30 pm Conclusion to Day 1 Events 7:00 pm

Day 2 Program

Poster Setup/Check-in and Breakfast	8:30 am
Poster Session 1	9:30 am
Invited Speaker: Dr. Rebecca Lindsey	11:15 am
Lunch	12:00 pm
Poster Session 2	1:15 pm
Invited Speaker: Dr. Kevin Dahm	3:00 pm
Poster Awards and Closing Remarks	3:45 pm
Conclusion to Day 2 Events	4:00 pm

Guest Speakers

Dr. Rebecca K. Lindsey Assistant Professor Department of Chemical Engineering University of Michigan

About the Speaker

Dr. Lindsey is an Assistant Professor of Chemical Engineering and by courtesy, of Applied Physics, Materials Science & Engineering, and Nuclear Engineering & Radiological Sciences at the University of Michigan. She is a member of the KIM Review Editorial Board and the Institute of Computational Science & Engineering Advisory Board, and is an Executive Committee Member of the APS Topical Group on Shock Compression of Condensed Matter. Dr. Lindsey received her B.S. in Chemical Engineering from Wayne State University and her M.S. and Ph.D. in Chemical Physics from the University of Minnesota, Twin Cities. She went on to become a Postdoctoral Research Fellow at LLNL, where she worked as a Staff Research Scientist leading research teams within the Energetic Materials Center. Throughout, Dr. Lindsey's work has been underpinned by a strong interest in developing tools enabling exploring inaccessible problem spaces. Her group also leverages data science, machine learning, and computer vision to aid in interpretation of large experimental datasets and develop material and device performance models from them. Her efforts were recently recognized through the LLNL Physical and Life Sciences Directorate Research Award and the Young Investigator Award from the AIChE's Computational Molecular Science and Engineering Forum.

Dr. Kevin Dahm

Professor & Undergraduate
Program Chair
Department of Chemical
Engineering
Rowan University

About the Speaker

Dr. Kevin Dahm is Professor and Undergraduate Program Chair of Chemical Engineering at Rowan University. He earned his B.S. from Worcester Polytechnic Institute in 1992 and his Ph.D. from Massachusetts Institute of Technology in 1998. Prior to joining Rowan University he was a Postdoctoral Researcher at University of California at Berkeley and an Adjunct Professor at North Carolina A&T State University. He has published articles on several aspects of engineering pedagogy, including assessment of student learning, teaching technical communication and engineering design, and game-based learning. He has co-authored two books: Fundamentals of Chemical Engineering Thermodynamics, with Donald Visco Jr., and Interpreting Diffuse Reflectance and Transmittance, with his father Donald Dahm. He received the Lindback Distinguished Teaching Award in 2019, and is the recipient of several national awards from ASEE including the Joseph J. Martin Award, the Raymond W. Fahien Award, the Corcoran Award, and the mid-Atlantic section Outstanding Teaching Award.

.

Student Oral Presentations

P.N.	Student Name	Presentation Title	Time
1	Rachel Ollier	Biomimetic Strain-Stiffening in Fully Synthetic Dynamic-Covalent Hydrogel Networks	2:00 pm
2	Ning Wang	Machine Learning Enabled Development of Accurate Force Fields for Refrigerants	2:20 pm
3	Runyao Zhu	Blocking Tau Transmission by Biomimetic Graphene Nanoparticles	2:40 pm
4	<u>Mayesha</u> <u>Sahir Mim</u>	Shining Light on Calcium-Mediated Morphogenesis: Forward Engineering Organ Development with Optogenetics and Mechanosensation	4:30 pm
5	5 Bo Su Dissipative Non-Equilibrium Host-Guest Hydrogels Regulated by Consumable Fuels		4:50 pm
6	Mengdi Liu	Polybenzimidazole-based Membranes with Semi-Interpenetrating Network (s-IPN) Structures for High-Temperature Precombustion Carbon Capture	5:10 pm

Poster Presentations

SESSION 1

P.N.	Presenter	Advisor/s	Poster Title	
P1	Piyush Deshpande	Jennifer Schaefer	Characterization of Solid-State Lithium-Sulfur Battery Reaction Intermediates	
Р3	Jialing Xu	William Phillip	Using Green Solvents for the Fabrication of Adsorptive Membranes via Surface Segregation and Vapor Induced Phase Separation Method	
P5	Kyle McCarthy	Hsueh-Chia Chang	A microfluidic platform for the detection of Alzheimer's Disease from colocalized surface proteins on exosomes	
P7	Lingyu Yang	Jennifer Schaefer	Water-Assisted Ion Conduction in Solid-State Charge-Transfer Complex Electrolytes for Lithium Batteries	
P9	Bernice Webber	Matthew Webber	Supramolecular hydrogels utilizing polymer-nanoparticle interactions for ultra-long acting basal insulin delivery	
P11	Connor Schmidt	Matthew Webber	A Non-Equilibrium Steady State Host-Guest Cross-linked Hydrogel	
P13	Anna O'Keefe	Casey O'Brien	Development of Composite Membrane Preparation Approaches to Enable Operando Transmission FTIR Characterization	
P15	Alejandro Chapero-Planell	Casey O'Brien	Tuning CO2 Conversion of Amine-based Polymer Catalyst through Structural Modification via Quaternization	
P17	Audrey Hansrisuk	Matthew Webber	Development of a supramolecular hydrogel for prime-boost vaccine delivery	
P19	Maria Unger	Jeremiah Zartman	$G_{\alpha}q$ homeostasis is required in organ size regulation, initiation of larval to pupal metamorphosis and larval survival in Drosophila melanogaster.	

Department of Chemical & Biomolecular Engineering

P21	Stephen Cini	Başar Bilgiçer	Utilizing a Nucleotide Binding Site Ligand for Antibody Purification
P23	Annabelle Li	William Phillip	Development of Composite Block Copolymer Adsorptive Membranes on a Nonwoven Support
P25	Deanna Poirier	Jason Hicks	Plasma-Assisted Approaches for the Direct Conversion of Natural Gas to Value-Added Products
P27	David Gazzo	Jeremiah Zartman	A Dynamic Interaction Between Ion Channels: Piezo and SERCA
P29	Bo Wei Cynthia Chen		
P31	Daniel Montes Pinzon	Hsueh-Chia Chang / Donny Hanjaya-Putra	Development of a High-Throughput Drug Screening Platform Via Pipetting Gel Droplet Micro-Organoids Models
P33	Shuman Liu	Jeremiah Zartman	Deciphering the interplay of morphogen and bioelectric signaling during growth and morphogenesis
P35	Christopher Addonizio	Matthew Webber	Material Consequences of Guest Orientation in Host-Guest Supramolecular Complex Crosslinking
P37	Sandra Weber	Ruilan Guo	Organosoluble Pentiptycene-Containing Polybenzoxazole Membranes for High Temperature Gas Separations
P39	Emily DeWolf	Matthew Webber	Leveraging Dynamic-Covalent Bonds for Glucose-Responsive Peptide Structures
P41	Russell Clarke	Jason Hicks	Coke Suppression and Pattern Formation in Light Alkane Plasma
P43	Weike Chen	Matt Webber	Sustained Release of Glucagon Like Peptide-1 (GLP-1) From An Injectable Hydrogel Protects Mice From Hyperglycemia
P45	Alba Scotto d'Apollonia	Jason Hicks	Polyoxometalates as Platforms for the Design of Single Site Catalysts for Light Olefin Oligomerization

Poster Presentations

Session 2

P.N.	Presenter	Advisor/s	Poster Title
P2	Ramón González- Pérez	Jonathan Whitmer	Characterization of Ion Binding Guided by Free Energy Calculations
P4	Krishnendu Mukherjee	Yamil Colón	Active learning for efficient navigation of multi-component gas adsorption landscapes in a MOF
Р6	James Carpenter	Yamil Colón	Modeling Adsorption in Soft Porous Coordination Polymers
P8	Orlando A. Mendible Barreto	Yamil Colón	Considerations in the use of ML interaction potentials for free energy calculations
P10	Fathya Salih	Yamil Colón	Developing an Open-Source Sigma Profile Generator for Accelerated Active- Learning Driven Molecular Discovery
P12	Wilson Raney	Yamil Colón	Entangled Photon Properties of Functionalized Metal-Organic Frameworks
P14	Kyla Jones	Alexander Dowling	Optimization Under Uncertainty with Bayesian Hybrid Models
P16	Damian Agi	Alexander Dowling	Modeling & Optimization of Pd-based Water-Gas Shift Membrane Reactors for Low-Cost Blue Hydrogen Production
P18	Madelynn Watson	Alexander Dowling	A Risk-conscious Optimization Model for Sustainable Aviation Fuel Production in the Brazilian Sugarcane Industry
P20	Dinis Abranches	Edward Maginn / Yamil Colón	Novel Sustainable Materials Design with Thermodynamics-Informed Machine Learning
P22	Etinosa Osaro	Yamil Colón	Active Learning of alchemical adsorption simulations, towards a universal adsorption model

Department of Chemical & Biomolecular Engineering

P24	Raghav Saxena	William	First-principles Investigation of N2O formation over H-SSZ-13 zeolite
		Schneider	catalyst
P26	Xinhe Chen	Alexander	Multiscale Optimization of Integrated Energy Systems that Co-Produce
		Dowling	Electricity and Hydrogen Using Market Surrogate Models
P28	Hailey Lynch	Alexander	Science-Based Design of Experiments and Pyomo.DoE
		Dowling	
P30	Logan Hennes	Jonathan	Coarse-Grained Modeling of Ionic Liquid Crystals
	0	Whitmer	,
P32	Barnabas	Edward Maginn	From elements to screened molecules: Towards the molecular design and
	Agbodekhe	O	discovery of green refrigerants
P34	Molly Dougher	Alexander	Opportunities for Membranes to Enhance Critical Mineral Processes
	, =5	Dowling	
P36	Jonathan	William Phillip	Guiding Material Design to Harness Unsteady State Transport Phenomena
	Aubuchon Ouimet		for Selective Solute Recovery
P38	Hyunsu Jeon	Yichun Wang	Chiral Nanocarriers: Enhancing Drug Transport and Delivery in Tumor-like
	Try ariod occit	rionan wang	Spheroids
P40	Gaeun Kim	Yichun Wang	Unraveling Origin-Dependent Exosome Uptake and Cargo Release using
	Gacarrain	richan wang	Chiral Nanoparticles
P42	James Johnston	Yichun Wang	Stimulated Biomaterials for understanding the biogenesis of Extracellular
1 72	Jairies John Stori	richum vvang	Vesicles (EVs)
P44	 Jordan Smith	 Jennifer	
F44	Jordan Smith		Understanding and Quantifying the Benefits of Gel Polymer Electrolytes in
		Schaefer	Rechargeable Batteries to Improve Safety
P46	Garam Lee	Casey O'Brien /	Investigation of Intermediate Species on a Catalytic Surface in Non-Thermal
		David Go	Plasma-Activated Carbon-Nitrogen Coupling from Methane and Nitrogen
P48	Xuyao Gao	William	Influence of N,N,N-trimethyl-1-adamantyl Ammonium on Defects/Al Siting
		Schneider	Energetics and Accessible Si/Al /Defect Ratio in CHA